Unique Minimal Liftings for Simplicial Polytopes

نویسندگان

  • Amitabh Basu
  • Gérard Cornuéjols
  • Matthias Köppe
چکیده

For a minimal inequality derived from a maximal lattice-free simplicial polytope in R, we investigate the region where minimal liftings are uniquely defined, and we characterize when this region covers R. We then use this characterization to show that a minimal inequality derived from a maximal lattice-free simplex in R with exactly one lattice point in the relative interior of each facet has a unique minimal lifting if and only if all the vertices of the simplex are lattice points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Unique-Lifting Property

We study the uniqueness of minimal liftings of cut generating functions obtained from maximal lattice-free polytopes. We prove a basic invariance property of unique minimal liftings for general maximal lattice-free polytopes. This generalizes a previous result by Basu, Cornuéjols and Köppe [3] for simplicial maximal lattice-free polytopes, thus completely settling this fundamental question abou...

متن کامل

Lifting properties of maximal lattice-free polyhedra

We study the uniqueness of minimal liftings of cut-generating functions obtained from maximal lattice-free polyhedra. We prove a basic invariance property of unique minimal liftings for general maximal lattice-free polyhedra. This generalizes a previous result by Basu, Cornuéjols and Köppe [BCK12] for simplicial maximal lattice-free polytopes, thus completely settling this fundamental question ...

متن کامل

Obstructions to Weak Decomposability for Simplicial Polytopes

Provan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation poly...

متن کامل

Transportation Problems and Simplicial Polytopes That Are Not Weakly Vertex-Decomposable

Provan and Billera defined the notion of weak k-decomposability for pure simplicial complexes in the hopes of bounding the diameter of convex polytopes. They showed the diameter of a weakly k-decomposable simplicial complex ã is bounded above by a polynomial function of the number of k-faces in ã and its dimension. For weakly 0-decomposable complexes, this bound is linear in the number of verti...

متن کامل

Weak Equivalences of Simplicial Presheaves

Weak equivalences of simplicial presheaves are usually defined in terms of sheaves of homotopy groups. We give another characterization using relative-homotopy-liftings, and develop the tools necessary to prove that this agrees with the usual definition. From our lifting criteria we are able to prove some foundational (but new) results about the local homotopy theory of simplicial presheaves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2012